
INTRODUCTION

Substantial advances in research methods offer new insights 
into the neurobiological mechanisms of psychiatric disorders. 
An accurate understanding of the molecular, cellular, and neu-
ral pathways of human psychiatric illnesses requires the inves-
tigation of human brain tissue. Unlike other human organs, 
brain tissue cannot be assessed by using biopsy samples of pa-
tients with psychiatric illness. Therefore, limitations exist on 
research concerning the neurobiology of human psychiatric 
disorders.

Brain samples obtained during an autopsy are critical for in-
vestigation of human psychiatric disorders. However, these 
samples represent disease end points and reveal little about dis-
ease initiation and progression, and are also difficult to collect 
postmortem. Likewise, neuroimaging studies of patients may 
measure consequences of the disease state rather than its origin. 
Lack of information about the neural circuit and whole brain 
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networks are also part of the problem. Animal models are chal-
lenging to interpret and translate to patients because of species-
specific differences between the human and animal brain. Ad-
ditionally, the lack of translatable animal models, particularly 
for the disorders in which higher function is involved, and the 
reliance on behavioral models may also be limiting.1 Further-
more, genetics research requires recruitment of a significant 
number of patients for more accurate results. Finally, peripheral 
tissue samples from patients may not be representative of neural 
tissue that is related to disease development. In order to over-
come these limitations, the generation of a new study model is 
necessary for developing the knowledge of the neurobiology of 
human psychiatric diseases.

Human induced pluripotent stem cells (hiPSCs) were first 
generated in 2007 by Yamanaka et al. hiPSCs were successful-
ly derived from human fibroblasts, and this was the first conver-
sion of somatic cells to human embryonic stem cells (hESCs). 
hiPSCs and hESCs share common characteristics including 
the capacity for self-renewal, pluripotent differentiation po-
tential, as well as morphology. However, hiPSCs have the ad-
vantage of bypassing the ethical issues of destroying embryos 
to obtain hESCs and immunological hurdles from heterolo-
gous cells. Induced pluripotent stem cells (iPSCs) are adult 
pluripotent stem cells generated from somatic cells by the in-
troduction of a set of transcription factors linked to pluripoten-
cy using either the classic virus-based methods or other meth-
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ods developed to avoid integration of foreign DNA into the 
host genome.2,3 Ectopic expression of the four transcription 
factors Klf-4, Oct4, Sox2, and c-Myc induces reprogramming 
of somatic human cells to a pluripotent state.2,4 These hiPSCs 
have characteristics similar to those of hESCs, derived from the 
inner cell mass of the embryonic blastocyst, and together hiP-
SCs and hESCs are referred to as human pluripotent stem cells. 
Patient-derived hiPSCs can then be differentiated into a wide 
range of somatic cell types including neuronal cells by adding 
a specific combination of growth factors under special culture 
conditions.5

Although ethical issues specific to the use of iPSCs and the 
potential of iPSCs to accumulate point mutations during culture 
may exist, the applications of this technology hold tremendous 
promise for studying and treating brain psychiatric disorders. 
Importantly, the advent of technology for somatic cell repro-
gramming now enables in vitro modeling of human brain cells 
in various psychiatric disease states using patient-derived cells. 
Because hiPSCs can be derived from adult patients after the 
development of psychiatric disease, they represent a potentially 
limitless source of human brain cells with which to study dis-
ease, even without knowing which genes are interacting to 
produce the disease state in an individual patient.6 In addition, 
reprogramming was initially established using dermal fibro-
blasts and integrating viral vectors, however, recent advances 
allow derivation of hiPSCs from cell types accessible by less in-
vasive methods, such as from keratinocytes,7 peripheral blood T 
lymphocytes,8,9 and exfoliated renal epithelial cells found in 
urine samples.10,11 In combination with efficient transgene-free 
reprogramming,12 these improvements facilitate the generation 
of hiPSCs from patients enrolled in clinical trials or studies. The 
iPSC approach to studying psychiatric disorders has enormous 
potential for many applications, including disease-specific cel-
lular models, disease mechanisms, platforms of drug discovery, 
cell-based therapy, and autologous sources for cell replacement 
therapy. 

iPSCs provide a novel way to study molecular and cellular 
mechanisms of neuronal differentiation, maturation, and de-
generation. Disorders associated with the origin of neurodevel-
opment and neurodegeneration have been preferentially stud-
ied, such as autism spectrum related disorders, schizophrenia, 
bipolar disorder, and dementia. In this article, we review the 
current use of iPSCs to study such psychiatric disorders.

SUMMARY OF PREVIOUS STUDIES ON 
PSYCHIATRIC DISEASES INVOLVING 
iPSCs

Phelan-McDermid syndrome
Phelan-McDermid syndrome (PMDS) is a neurodevelop-

mental disorder, which presents symptoms such as seizures, 
intellectual disability, impaired speech, and increased risk of 
autism spectrum disorders (ASDs) by deletion of the SH3 and 
multiple ankyrin repeat domains 3 (SHANK3) gene on chro-
mosome 22q13.3.13 Generated hiPSC-derived neurons from 
PMDS patients showed significant deficits in excitatory synap-
tic transmission due to both an incorrect number of excitatory 
synapses and reduced expression of glutamate receptors in con-
trast to unconverted inhibitory synaptic transmission. hiPSC-
induced neurons in PMDS show that loss of a copy of SHANK3 
downregulated the expression of the SHANK3 protein iso-
form. Several drugs including trichostain A, valproic acid, ni-
fedipine, and IGF2 were tested to restore the synaptic deficits 
in PMDS based on previous studies. However, only treatment 
of neurons differentiated from PMDS-derived hiPSCs with 
IGF1 showed restored excitatory synaptic transmission dem-
onstrated by an increase in the number of synaptic α-Amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-
Methyl-D-aspartate (NMDA) receptors. IGF1 treatment with 
derived neurons from PMDS patients encourages formation 
of a class of synapses containing postsynaptic density protein 
95 (PSD95) but lacking in SHANK3 associated synapses.14

Timothy syndrome
Timothy syndrome (TS) is a multisystemic disorder caused 

by a mutation in the CACNA1C gene, which encodes voltage 
gated calcium channels such as Ca (V) 1.2. Clinical manifes-
tations associated with this disease include syndactyly, con-
genital heart disease, cardiac arrhythmia, and autism.15 Trans-
formed hiPSCs-derived neurons from two type-1 TS patients 
presented wider action potential and increased intracellular 
calcium levels, which indicate defects in action potential fir-
ing and calcium signaling. In addition to altering genes related 
to calcium dependent regulation, TS mutation caused up-reg-
ulated expression of tyrosine hydroxylase leading to increased 
production of norepinephrine and dopamine. Decreased 
neuronal expression in the lower cortical layer, such as the 
fractional callosal projection, and increased upper neuronal 
expression, such as subcortical structure, was also demon-
strated with TS mutation. Roscovitine, a cyclic-dependent ki-
nase inhibitor and atypical L-type channel blocker, reduced 
the ratio of tyrosine hydroxylase neurons in patients with TS, 
which could restore increased expression of tyrosine hydroxy-
lase in the cells of individuals with TS.16 Krey et al.17 found 
that mutant TS Cav 1.2 channels result in activity-dependent 
dendrite retraction in both rat and human neurons. However, 
this phenomenon was not mediated by a calcium dependent 
mechanism, but rather by insufficient recruited levels of the 
small GTP-binding protein Gem by the mutant TS Cav 1.2 
channel, leading to excessive ectopic activation of RhoA (Ras 
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homolog gene family, member A, a small GTPase) hence den-
dritic retraction.

Rett syndrome
Rett syndrome (RTT) is one of the most prevalent female 

neurodevelopment disorders, with an incidence of 1 in 10,000–
15,000 female births. Patients with RTT show normal develop-
ment until 6–18 months after birth and then present symptoms 
including severe mental retardation, absence of speech, stereo-
typic hand movements, epileptic seizures, encephalopathy, and 
respiratory dysfunction.18 Mutations in the X-linked gene en-
coding methyl CpG binding protein2 (MECP2) were identified 
as the most common (over 95%) genetic cause of RTT.19 More-
over, cyclin-dependent kinase-like 5 (CDKL5)20 and forkhead 
box G1 (FOXG1) on chromosome 14 are known to be related 
to RTT.21 

While no differences were observed in neurogenesis, gluta-
matergic neurons derived from the hiPSCs of four RTT pa-
tients had fewer synapses, reduced spine density, smaller soma 
size, a reduction in the transient rise of intracellular calcium 
levels of active synapse, as well as a decrease in frequency and 
amplitude of spontaneous postsynaptic currents relative to con-
trols. Taken together, they suggest a deficiency in neuronal net-
work connectivity. Decreased synapse number in some clones 
and decreased MECP2 levels in RTT neurons were improved 
following treatment with IGF1 and low dosage of gentamicin, re-
spectively.22 iPSC-derived neurons from heterozygous Mecp2308 
mice showed significant dysfunction in the generation of evoked 
action potentials, which included decreased action potential 
amplitude, decreased number of action potentials, and pro-
longed rise time, decay time, and duration. Diminished peak in-
ward currents and higher input resistance was also observed 
compared with wild-type iPSCs-derived neurons. Furthermore, 
reduced frequency of miniature excitatory postsynaptic currents 
in hemizygous mutant mouse iPSCs induced neurons present 
deficits in excitatory synaptic transmission.23 

Moreover, recent RTT hiPSCs studies provide genetic mech-
anisms involving the MECP2 regulatory (transcriptional reg-
ulation, modulation of the expression of mitochondria related 
genes, and modulation of synaptic expression of a dysbindin 
Bloc Network) pathway in undifferentiated cells.24,25 In addi-
tion, differentiated astrocytes from the hiPSCs from three RTT 
patients have a negative effect on the morphology and func-
tion of neuronal growth in wild-type mice, as also observed 
in RTT human autopsy samples and in RTT mouse models. 
Short-term treatment with IGF1 or GPE (a peptide containing 
the first 3 amino acids of IGF1) increased the wild type neu-
ronal soma size caused by RTT mutant hiPSCs derived astro-
cytes.26 Clones of CDKL5-mutated iPSCs induced neurons 
from a female and a male RTT patient demonstrated the possi-

bility of these iPSCs to serve as ideal experimental controls.27 
HiPSCs from RTT patients with FOXG1 are yet to be reported.

Schizophrenia 
Schizophrenia (SCZ) is a devastating mental disorder28,29 

characterized by the following three symptom categories: Posi-
tive symptoms including hallucinations and delusions, nega-
tive symptoms such as apathy and anhedonia, and cognitive 
dysfunction in attention and working memory. It is widely ac-
cepted that the pathophysiology of SCZ involves neurodevel-
opmental processes, which presumes that abnormal neurode-
velopment, including impaired synaptic pruning, precedes the 
onset of prominent psychotic symptoms.30-32 Previous studies, 
including postmortem, brain imaging, pharmacological, ge-
netic, and animal studies, have provided valuable insight into 
common phenotype and neuronal pathology of disease de-
spite the heterogeneity in clinical manifestation. However, 
these studies have revealed less about disease initiation and 
progression due to implicit limitations. 

Reprogrammed fibroblasts from SCZ patients can be differ-
entiated into neurons via hiPSCs. SCZ hiPSCs neurons showed 
reduced neuronal connectivity in conjunction with decreased 
neurite number, PSD95-protein levels, and glutamate receptor 
expression. Gene expression profiles of SCZ hiPSCs neurons 
identified altered expression of many components of the cAMP 
and WNT pathways, which are closely related to psychiatric 
disorders. Key cellular and molecular elements were improved 
following a 3-week treatment of SCZ hiPSCs neurons with the 
specific antipsychotic Loxapine. However, this study had limita-
tions related to the heterogeneity of patients, had a small sample 
size, and limited patient profile.33 A subsequent research study 
showed that neural progenitor cells (NPCs), which are a mini-
mally differentiated form of neurons, from SCZ hiPSCs have 
aberrant cell migration and demonstrate increased oxidative 
stress.34 

Paulsen et al.35 reported that only NPCs, not fibroblast cells, 
and iPSCs derived from SCZ hiPSCs presented a two-fold in-
crease in extra-mitochondrial oxygen consumption as well as 
an increase in the level of reactive oxygen species. Further-
more, the mood stabilizer, valproic acid reverted the altered 
extra mitochondrial oxygen consumption and reactive oxygen 
species of SCZ NPCs to normal levels. Further studies also 
showed increased levels of zinc and potassium from SCZ hiP-
SCs derived NPCs, which were improved by valproic acid treat-
ment.36 

hiPSCs derived from the hair follicles of SCZ patients dem-
onstrated the presence dopaminergic neurons with the inability 
to differentiate, glutamatergic neurons with maturation diffi-
culties. Mitochondrial dysfunctions such as impaired mito-
chondrial respiration, sensitivity to dopamine induced inhibi-
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tion and dissipation of mitochondrial membrane potential 
(Δψm) was also observed.37 Yu et al.38 differentiated SCZ hiPSCs 
into dentate gyrus NPCs that presented lower expression levels 
of hippocampal neurogenesis. Moreover, SCZ-hiPSCs-derived 
neurons showed reduced levels of neuronal activity and spon-
taneous neurotransmitter release. 

Bipolar disorder
Bipolar disorder (BD) is an affective disease characterized 

by alternating episodes of mania and depression. The heritabil-
ity of BD is estimated at 79–93%, and studies have found can-
didate genes and genetic mechanisms associated with BD, de-
spite its complex etiology.39 However, BD is typically diagnosed 
in the late teens to twenties, which presumably presents the in-
fluence of abnormalities during the neurodevelopmental peri-
od as well as progressive neuropathic changes.40 Although there 
were no transcriptional differences between BD hiPSCs and 
control hiPSCs, BD hiPSCs induced neurons expressed increased 
membrane receptors and ion channels compared with control 
neurons. In addition, BD hiPSCs induced neurons expressed 
genes associated with an early ventral CNS fate, while control 
neurons expressed transcripts characteristic of a dorsal telence-
phalic fate. Furthermore, BD hiPSCs induced neurons had a 
higher calcium transient and wave amplitude than controls, 
which can be restored by lithium pretreatment.41

Alzheimer’s disease
Alzheimer’s disease (AD) is the most common neurodegen-

erative disease and the most common cause of dementia with 
pathologic findings including reduced synaptic connectivity, 
neuronal loss, and intracellular neurofibrillary tangles com-
posed of the Aβ amyloid fragments of the amyloid precursor 
protein (APP) and hyper-phosphorylated Tau protein.42 Muta-
tion in APP and Presenilin 1, 2 (PS 1, 2, which are two compo-
nents of the γ-secretase complex) genes are common causes of 
Familial Alzheimer’s Disease (FAD).43,44 

By using hiPSCs, human neuronal models of dementia de-
rived from patient tissue can be generated.45 Differentiated 
hiPSCs neuronal cells from a FAD patient with mutation in 
the PS1 and PS2 genes showed an increased Aβ42/Aβ40 ratio 
as seen in post mortem study from FAD patients.46 The longer 
Aβ peptide form, Aβ42, appears to be more toxic to cells at 
higher concentrations, therefore an increased Aβ42/Aβ40 ra-
tio may promote toxicity.42 Moreover, derived neurons from 
hiPSCs of FAD patients with APP mutation47 and induced PS1 
mutation from unaffected individuals48 also presented this 
increased extracellular Aβ42/Aβ40 ratio phenomenon. Gener-
ated hiPSCs derived cortical neurons from three AD patients, 
including one sporadic AD patient, displayed increased Aβ40 
expression, phosphorylation of the tau protein, and activated 

glycogen synthase kinase 3β (aGSK-3β) compared to controls. 
However, there were no significant differences in synapse 
number, neuronal survival, and electrophysiological activity 
even after several weeks.49 

Derived hiPSCs neurons from a FAD patient with APP mu-
tation showed accumulated intracellular Aβ oligomers in con-
trast to very low extracellular levels of the Aβ form, leading to 
endoplasmic reticulum (ER) stress and oxidative stress, which 
might contribute to AD pathogenesis. This suggests the idea of 
a two type of AD classification: the extracellular Aβ type and 
the intracellular Aβ type. Transformed neurons from one of 
the sporadic AD patients also showed increased intracellular 
Aβ oligomers, which could be rescued by β-secretase activity 
inhibitors.47 These findings are in line with the notion of ge-
nomic significance in sporadic AD as well as the effect of envi-
ronmental factors and aging. 

Despite such improvements, it is still difficult to make a spo-
radic AD model, which is the most common cause of AD, due 
to a combination of multiple genetic factors (Apolipoprotein E 
isoform E4, CR1, Clusterin and SORL1) and non-genetic fac-
tors such as environment stressors.50

Fronto-temporal dementia
Fronto-temporal dementia (FTD) is the second most com-

mon presenile dementia after AD, and is characterized by neu-
ronal and synaptic loss in the frontal cortex. Clinically it is asso-
ciated with more prominent deficits in higher cognitive 
function compared with AD.51 Mutations in the transactive re-
sponse DNA binding protein-43 (TDP-43) locus, progranulin 
(PGRN) gene, microtubule associated protein tau (MAPT) 
gene, intronic hexacucleotide repeats, and expansions within 
the C90RF72 locus can all lead to familial cases of the disease.52 
Mutant TDP-43 hiPSCs derived neurons have higher levels of 
the TDP-43 cytoplasmic protein as well as reduced survival.53-55 
Mutant neurons displayed reduced survival in the presence of a 
selective phosphatidylinositol 3’-kinase pathway inhibitor53 and 
staurosporine, a broad kinase inhibitor,55 even under basal con-
ditions.54

Neurons derived from an FTD patient with a PGRN muta-
tion were more vulnerable towards toxins, such as tunicamy-
cin (protein N-glycosylation inhibitor) and lactamycin (prote-
asome inhibitor). Furthermore, these derived neurons revealed 
increased sensitivity to straurosporine, two PI3K/Akt inhibi-
tors, and a MEK/MAPK inhibitor, which implicates the under-
lying pathogenesis of human PGRN mutation. These results, 
except endoplasmic reticulum stress induced by tunicamycin, 
were rescued by ectopic PGRN expression. Interestingly, the 
FTD-PGRN-hiPSCs-neuron cells had sustained TDP-43 mis-
localization.56

Fong et al.57 generated replaced hiPSCs-derived neurons (A/
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A) from a patient with a heterozygous MAPT (A/T) mutation 
using zinc-finger technology for mutation correction. After 
mutation correction, recovered neurons (A/A) had decreased 
TAU fragmentation and phosphorylation, whereas neurons 
intensified with homozygous MAPT mutation (T/T) had in-
creased phosphorylation and enhanced TAU fragmentation.

Several hiPSCs studies have focused on the hexanucleotide 
CRORF72 GGGGCC repeat expansion upstream of the cod-
ing region of C9ORF72 and suggested accumulation and dis-
turbed RNA metabolism as a contributing pathogenic factor 
in C9ORF72 FTD.58-60 The results of the research above are 
summarized at Table 1. 

Drug studies involving hiPSCs
The lack of representative animal models, reliable biomark-

ers, and precise mechanisms of psychiatric diseases in addition 
to technical challenges in obtaining proper samples from pa-
tients have all presented significant hurdles to psychiatric drug 
discovery. The advent of new technology, such as hiPSCs that 
reflect the genetic signature of the patients from which they 
are derived from, could overcome these obstacles. Many ad-
vanced drug studies using hiPSCs from diverse psychiatric pa-
tients have been conducted (Table 2) and it appears that these 
studies have two general mainstreams so far. 

First, recovery of a patient’s cellular phenotypes by applying 
existing drugs approved in a clinical setting or putative agents 
related to molecular mechanisms of disease pathogenesis, which 
then provides evidence that supports the validity of a cellular 
model for a psychiatric disorder. For instance, although both β 
and γ-secretases reduced the level of Aβ40, only β-secretase in-
hibitors affected phosphorylated TAU and GSK-3β in hiPSCs 
derived neurons from AD patients. This may suggest underlying 
mechanisms of APP processing by β-secretase and γ-secretase 
activity and genetic factors associated with sporadic AD.49

Second, amelioration of the altered phenotypes of patient’s 
hiPSCs using new classes of drugs that demonstrate therapeu-
tic efficacy towards known or novel targets enable researchers 
to establish valuable drug screening and drug discovery tools. 
Most of the studies at present actually belong to the former 
category, since the latter faces limitations,61 which could be 
overcome in the near future by technological advances (men-
tioned later).

DISCUSSION

Limitations of previous studies on iPSCs
A number of limitations in former iPSCs studies exist. First, 

several previous studies stand on the basis of the cell banks, 
which provide only basic diagnostic and demographic infor-
mation, leading to limited patient profiles. Second, due to their Ta
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small sample size (typically 1–4 patients), the results of previ-
ous studies cannot be assumed as representative of the larger 
patient population. Third, some studies were conducted with 
epidemiological differences between experimental patients and 
controls and heterogeneity of patient and control cohorts, even 
without controls. Fourth, there are still no effective experimen-
tal methods to control inter-patient and intra-patient variability, 
including experimental variability, scalability of hiPSCs genera-
tion and neural differentiation; although many groups are pur-
suing strategies to overcome these difficulties. In addition to 
previous studies, there are still unexplored fields in psychiatric 
disease to which hiPSCs technology can be applied, such as 
major depression and attention deficit hyperactivity disorder 
with genetic risk factors.

Future directions 
There could be latent practical harm and obstacles involved 

in obtaining more biopsy samples from fibroblast or adipose 
tissue cells of patients who suffer from anxiety and worry. Gen-
erating hiPSCs from hair follicles, urine, and blood may be safer 
and convenient options for recruiting more patients for techno-
logically advanced studies. Unlike well-studied monogenic 
neurodevelopmental disorders such as Rett syndrome, most 
psychiatric diseases are attributed to multiple levels of etiologic 
causes, which could be a potential obstacle to successful study. 

Furthermore, previous studies involving psychiatric patients 
with early onset history and significant hereditary family histo-
ry was successful to some extent;33 however, rare inclusion cri-
teria make it challenging to represent a larger patient popula-
tion and be applied to sporadic psychiatric disease. 

Therefore, using a patient cohort with a shared clinical phe-
notype or comparing patients with or without phenotypes for 
selecting subgroups such as pharmacological responses can 
help overcome inter-patient variability.62 For instance, one study 
used hiPSCs from schizophrenia patients with DISC gene to 
make a homogeneous patient population design63 whereas an-
other study included hiPSCs from one schizophrenia patient, 
which was identified as clozapine resistant.35 Furthermore, in-
vestigators who wish to collect a larger sample size should con-
sider more refined clinical phenotypic characterizations com-
bined with various information such as previous medical 
history, family history, drug history, genetic history, neuroimag-
ing history, and even neuropsychological assessment of pa-
tients, if possible. Using these numerous patient information, re-
searchers might be able to present a more integrated approach 
to hiPSCs disease modeling. 

The generation of hiPSCs is now becoming a more com-
mon study design tool in psychiatry. However, differentiation 
of these hiPSCs into neuronal types of interest remains challeng-
ing though it is important, as correct development is essential to 

Table 2. Summary of drug effect of published iPSCs studies

Disease Drugs Results
Shcheglovitov  
  et al. (2013)14

PMDS IGF-1 Restoration of synaptic deficits in PMDS hiPSCs neurons 

Pasca et al. (2011)16 TS Roscovine Reversion to decreased expression of tyrosin hydroxylase in neurons  
  (68% reduction)

Marchetto et al. (2010)22 RTT IFG1 and low dosage  
  of gentamicin

Increase of glutamatergic neuronal synapse number in part (IGF1),  
  enhancement of the full length of MeCP2 levels in RTT neurons (gentamycin)

Williams et al. (2014)26 IGF1 and GPE Partial rescue of the neuronal deficits by mutant RTT hiPSCs derived  
  astrocytes

Brennand et al. (2011)33 SCZ Loxapine Increased neural connectivity of hiPSCs neurons
Paulsen Bda et al. (2012)35 Valproic acid Reduced reactive oxygen species of SCZ NPCs back to levels similar to controls
Chen et al. (2014)41 BD Lithium Restored increased wave amplitude and intensity of calcium in BD neurons 
Yagi et al. (2011)46

Israel et al. (2012)49

AD γ-secretase inhibitor Reduced production of Aβ42 and Aβ40 in hiPSCs derived neurons  
  (Compound E, a potent γ-secretase inhibitor) a decrease the Aβ42/Aβ40 ratio  
  (Compound W, the agent to modulate γ-secretase mediated APP cleavage)
No changes in phosphorylated tau and aGSK-3β accumulation

β-secretase inhibitor Reduced Aβ 40, aGSK-3β accumulation, phosphorylated tau, total tau
Kondo et al. (2013)47 Low concentration  

  of DHA 
Decreased binding immunoglobulin protein, cleaved caspase-4,  
  peroxiredoxin-4 and reactive oxygen species, Rescued cell viability in  
  neurons from FAD with APP E693∆ mutation

iPSCs: induced pluripotent stem cells, hiPSCs: human induced pluripotent stem cells, PMDS: Phalen-McDermid syndrome, TS: Timothy 
syndrome, RTT: Rett syndrome, Mecp2: mutation in X-linked gene encoding methyl CpG binding protein2, SCZ: schizophrenia, BD: bipolar 
disorder, AD: Alzheimer’s disease, APP: amyloid precursor protein, aGSK-3β: activated glycogen synthase kinase 3β, DHA: docosahexaenoic 
acid, FAD: familal Alzheimer’s disease
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the neocortex, especially with unaffected individuals. Therefore 
more standardized protocols of differentiation should be gener-
ated. Because iPSC-based technology has yet to overcome its in-
trinsic constraints as mentioned above, one alternative to repro-
gramming strategies for differentiation of neurons is skipping 
cellular reprogramming and differentiation, which require at least 
a few months for the conversion of fibroblasts, and going direct-
ly to neurons,64,65 or using exogenous neuronal transgenes.66 
However, it is important to note that direct conversion skips the 
normal developmental process, which may be a critical time of 
disease pathogenesis.67

Future approaches for drug studies will explore not only 
finding drugs that confirm known disease models or drug ef-
fects but also finding unrecognized pathophysiological mecha-
nisms of psychiatric disease, which could lead to drugs targets 
using more efficient methods such as shorter time, larger pop-
ulations of homogeneous cell types, and lower financial costs. 
To achieve this, a more standardized system such as high-
throughput screening and sophisticated cell purifying methods 
using specific cell surface markers should be evolved. Recent ad-
vances in genetic manipulations provided some opportunities to 
produce homogeneous and stable populations of late cortical 
progenitors from hiPSCs, which could be amplified and differ-
entiated preferentially into glutamatergic neurons. Moreover, 
this method shortens the timeframe for generating neurons 
from hiPSCs and enables investigators to make larger banks 
that can be stored and frozen.68 

CONCLUSION

hiPCSs reprogrammed from patient’s somatic cells present a 
novel tool to study psychiatric disorders which conventionally 
lack methodological approaches such as translatable animal 
models, reliable biomarkers of therapeutic efficacy69 and ethical 
strategies for directly obtaining, thus spreading the range of 
treatment option. Since iPSCs retain the genetic composition of 
the patient and presumably reproduces the alteration of those 
of patients compared to controls, information regarding chang-
es of synaptic development and function such as synaptic trans-
mission, as well as alteration in intracellular signaling and neu-
ronal maturation have been found in most studies of hiPSCs 
derived neurons so far. It is expected that hiPSCs will serve as a 
useful tool for studying the neurodevelopmental process of 
psychiatric disease, and will also be useful in both drug screen-
ing and drug development.
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