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INTRODUCTION

The neuropathology of behavioral, metabolic and psychi-
atric conditions is not sufficiently understood but current 
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knowledge indicates that the underlying mechanisms are, at 
least in part, overlapping.1,2 Modification of feeding behavior 
and energy metabolism are common symptoms of psychiat-
ric disorders, as well as frequent side effects of psychophar-
macological treatments.3,4 The arcuate nucleus of the hypo-
thalamus integrates hormonal, neuronal, and environmental 
signals to regulate food intake and body weight, but also emo-
tions.1 Meanwhile, the brain energy requirement at resting 
state for neuronal computation, information processing and 
housekeeping functions correspond to more than 20% of the 
body’s consumption.4-6

Adenosine monophosphate (AMP)-activated protein ki-
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nase (AMPK) is the cellular energy sensor that regulates 
multiple pathways to maintain energy homeostasis.7 AMPK 
is activated under conditions of low intracellular adenosine 
triphosphate (ATP). The activity of AMPK can be regulated 
by both allosteric activation and phosphorylation. Allosteric 
activation is triggered by increased intracellular AMP:ATP 
or adenosine diphosphate (ADP):ATP ratio, which facilitates 
the binding of AMP or ADP to the γ regulatory subunit.8 
AMPK phosphorylation at threonine 172 (Thr172) in the α 
catalytic subunit is mostly regulated by the liver kinase B1 
(LKB1)9 and calcium/calmodulin-dependent kinase kinase β 
(CaMKKβ).10,11 In mammals, metabolism and energy bal-
ance at the whole-body level is met by AMPK regulation in 
the hypothalamus, being activated by fasting and inhibited 
by feeding and hypothermia.8

At cellular level activation of AMPK changes metabolism 
to promote ATP production while switching off biosynthetic 
pathways that consume ATP.8 These changes affect not only 
metabolism of glucose, lipids and proteins, but also mito-
chondrial biogenesis and autophagy. One target of AMPK is 
the regulation of acetyl-coenzyme A (CoA) carboxylase (ACC) 
and carnitine palmitoyl transferase 1 (CPT1) pathway, which 
is implicated in fatty acid biosynthesis and oxidation. ACC 
catalyzes the conversion of acetyl-CoA to malonyl-CoA that 
is a substrate for fatty acid biosynthesis and an allosteric in-
hibitor of CPT1.12 Inhibition of ACC activity by phosphory-
lation at Ser79 by AMPK13 results in decreased levels of mal-
onyl-CoA and activation of CPT1.14 CPT1 catalyzes the rate-
limiting reaction of long-chain fatty acyl-CoA transport to 
the mitochondria for β-oxidation.15

Psychoactive drugs frequently influence feeding behavior 
and body weight.3 Weight gain in patients treated with clo-
zapine is significantly higher than in patients treated with 
other antipsychotics.16 Kim et al.17 showed that clozapine af-
fects lipid metabolism in rat frontal cortex by activation of 
the AMPK-ACC-CPT1 pathway. In addition, another study 
showed that the antipsychotics clozapine and aripiprazole 
impaired insulin action and increased AMPK phosphoryla-
tion in rat hypothalamic neurons.18 Therefore, we asked what 
could be the effect of atomoxetine and fluoxetine, two drugs 
associated with loss of appetite and weight, in the regulation 
of AMPK phosphorylation and the AMPK-ACC-CPT1 
pathway. 

Atomoxetine is a selective norepinephrine transporter an-
tagonist,19 which binds to the norepinephrine uptake site with 
high affinity and the serotonergic uptake site with lower af-
finity.20 Atomoxetine is prescribed for attention deficit hyper-
activity disorder and is associated with appetite suppression 
and weight loss.21 Fluoxetine is a selective serotonin reuptake 
inhibitor (SSRI), which inhibits reuptake of serotonin through 

inhibition of the presynaptic membrane serotonin transport-
er.22 Fluoxetine is prescribed for depression and anxiety dis-
orders. Fluoxetine is also associated with weight loss and is 
even considered a potential therapeutic agent for treatment of 
obesity.23-25 Here, we investigated the effect of atomoxetine and 
fluoxetine in the activity of AMPK and downstream ACC and 
CPT1 pathway in human brain cell lines, SH-SY5Y and U-87 
MG cells.

METHODS

Cell culture
Human neuroblastoma cell line SH-SY5Y and human glio-

blastoma cell line U-87 MG were purchased from the Ameri-
can Type Culture Collection (Rockville, MD, USA). Cells 
were maintained in Dulbecco’s Modified Eagle’s Medium 
(Welgene; Seoul, Korea) supplemented with 10% fetal bovine 
serum (Welgene), 100 U/mL penicillin, and 0.1 mg/mL strep-
tomycin (Welgene) in 95% air and 5% CO2 at 37°C. Cells were 
seeded at a density of 2×106/mL in 6-well plates or 150 mm2 
dishes. The next day, cell media was changed to serum-free 
media and cells were treated with different concentration of 
atomoxetine hydrochloride or fluoxetine hydrochloride (Sig-
ma-Aldrich; St. Louis, MO, USA) dissolved in dimethyl sulf-
oxide (DMSO). STO-609, a CaMKKα and CaMKKβ inhibi-
tor,26 was purchased from Tocris (Ellisville, MO, USA) was 
prepared in DMSO and 2.5 μg/mL concentration adminis-
tered 30 min before atomoxetine and fluoxetine treatments.

 
Western blotting 

Cells were lysed in lysis buffer (2% SDS, 1% 2-mercaptoeth-
anol, 10% glycerol, and 0.1 mg/mL bromophenol blue in Tris-
HCl, pH 6.8), heated at 100°C for 10 min and protein amount 
measured using bicinchoninic acid assay (Bio-Rad; Hercules, 
CA, USA). 2-mercaptoethanol was added to the lysates (30 μg), 
heated at 100°C for 5 min and electrophoresed using sodium 
dodecyl sulphate-polyacrylamide gels. Proteins were trans-
ferred to nitrocellulose membranes and incubated with pri-
mary antibodies anti-phospho-AMPK (pAMPK [Thr172]; 
Cell Signaling Technology, Beverly, MA, USA), anti-AMPK, 
anti-phospho-ACC1/2 (pACC1/2 [Ser79]; Cell Signaling 
Technology), anti-ACC1/2, anti-β actin antibody (Cell Sig-
naling Technology), anti-CPT1A, and anti-CPT1C (Abcam; 
Cambridge, UK) for 16 h at 4°C. After washing with Tris-
buffered saline–0.05% Tween 20 (TBS-T), blots were incubat-
ed with horseradish peroxidase-conjugated anti-rabbit or an-
ti-mouse IgG, and the signal was visualized using the ECL 
system (Thermo Fisher Scientific; Waltham, MA, USA). Im-
ages were acquired using a Molecular Imager ChemiDoc 
XRS+ (Bio-Rad), and band intensity was quantified using 
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Image Lab software version 2.0.1 (Bio-Rad).

CPT1 activity assay
For CPT1 activity assay, mitochondrial and cytosol frac-

tions were isolated from SH-SY5Y and U-87 MG cells using 
the Mitochondria fractionation kit (Pierce Biotechnology; 
Rockford, lL, USA). A CPT1 activity was determined using 
the human CPT1 ELISA Kit (MBS724213, MyBiosource; San 

Figure 1. Atomoxetine and fluoxetine treatment increase phosphorylation levels of AMPK and ACC (A, D, G, J). Representative western 
blots of SH-SY5Y cells (A, G) and U-87 MG cells (D, J) treated with 5 μg/mL atomoxetine (A, D) and 5 μg/mL fluoxetine (G, J) for 10, 30, 60, 
180, and 360 min. Densitometric quantification of western blot data shown as percent ratio of pAMPK/AMPK expression (B, E, H, K). Den-
sitometric quantification of western blot data shown as percent ratio of pACC/ACC expression (C, F, I, L). Values are presented as means± 
SEM (N=4, *p<0.05; **p<0.01; ***p<0.001). AMPK, anti-adenosine monophospate-activated protein kinase; pAMPK, anti-phospho-AMPK; 
ACC, anti-acetyl-CoA carboxylase; pACC, anti-phospho-ACC; SEM, standard error of the mean.
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Diego, CA, USA) according to manufacturer’s instructions.

Data analysis
All values are expressed as means±standard error of the 

mean. Statistical analysis was conducted with SPSS (ver. 19; 
IBM Corp., Armonk, NY, USA) using one-way ANOVA; dif-
ferences were considered significant at p<0.05.

 
RESULTS

Effect of atomoxetine and fluoxetine on the 
phosphorylation of AMPK and ACC

To investigate the effect of atomoxetine and fluoxetine in 
the activity of AMPK, we treated SH-SY5Y and U-87 MG cells 
and quantified phosphorylation changes over time (10, 30, 60, 
180, and 360 min) using immunoblotting technique (Figure 1). 
The antibody pAMPK recognizes phosphorylation at Thr172 
sites, which is directly correlated with AMPK activity.27 

Overall, phosphorylation of AMPK increased significantly 
by at least 2-fold in the two cell lines with atomoxetine and 
fluoxetine treatment (Figure 1A, B, D, E, G, H, J, K). However, 
although the response kinetics to atomoxetine was similar in 
the two cell lines, the response to fluoxetine was different. 
The expression levels of pAMPK in SH-SY5Y cells treated 
with fluoxetine followed a bell-shaped curve with an early 
increase after 10 min and decreasing after 60 min (Figure 
1H). For the other conditions, a significant increase in 
AMPK phosphorylation was observed 30 min after drug treat-
ment with a maximal constant level after 180 min (Figure 1A, 
E, K). As expected for an AMPK substrate, the changes in the 
phosphorylation levels of ACC1/2 (or ACC for simplicity) 
followed closely those observed for AMPK (Figure 1A, C, 
D, F, G, I, J, L). Therefore, these results suggest that atomox-
etine and fluoxetine activate AMPK and inactivate ACC, a 
downstream target on the AMPK-ACC-CPT1 pathway.
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Figure 2. Atomoxetine and fluoxetine treatment induce mitochondrial CPT1 activity in SH-SY5Y (A, B) and U-87 MG (C, D) cell lines. Rep-
resentative western blots of mitochondrial and cytosol fractions of SH-SY5Y (A) and U-87 MG (C) cells treated with 5 μg/mL atomoxetine and 
5 μg/mL fluoxetine for 60 min. Measure of intracellular activity of CPT1 in mitochondrial and cytosol fractions of SH-SY5Y (B) and U-87 MG (D) 
cells treated with 5 μg/mL atomoxetine and 5 μg/mL fluoxetine for 30 min. Values are presented as means±SEM (N=3, *p<0.05; **p<0.01). 
C, vehicle control; A, atomoxetine; F, fluoxetine; CPT, carnitine palmitoyl transferase; SEM, standard error of the mean.
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Mitochondrial CPT1 activity is increased 
by atomoxetine and fluoxetine 

The increase in ACC phosphorylation suggests that CPT1 
expression may be increased after atomoxetine and fluox-
etine treatment. Two CPT1 isoforms are present in the brain; 
mitochondrial CPT1A is expressed throughout the body and 
CPT1C is localized in the endoplasmic reticulum and ex-
pressed in neurons.28 The exact function of CPT1C is not com-
pletely understood but it is supposed to facilitate the entry of 
palmitoyl-CoA to the endoplasmic reticulum.28 Mitochondri-
al CPT1 control fatty acid β-oxidation by catalyzing the first 
step in the transport of long chain fatty acids from the cyto-
plasm to the mitochondrial matrix.29 Using immunoblotting 
we observed that both cell lines express CPT1A and CPT1C, 
but protein levels did not change with the two drug treat-
ments (Figure 2A and C). Therefore, we measured CPT1 ac-
tivity in mitochondrial and cytosol cellular fractions after at-
omoxetine or fluoxetine treatment (Figure 2B and D). Only 
mitochondrial fractions show modified CPT1 activity with 
drug treatment. For atomoxetine treatment, activity was in-
creased 5.1-fold in SH-SY5Y and 5.9-fold in U-87 MG cell 
lines. For fluoxetine treatment, activity was increased 5.0-
fold in SH-SY5Y and 5.7-fold in U-87 MG cell lines. These 

results suggest that atomoxetine and fluoxetine treatments 
increase fatty acid β-oxidation in the mitochondria.

Atomoxetine activate AMPK through CaMKK 
signaling pathway

AMPK is activated by CaMKK,11 therefore we tested if the 
activation effect of atomoxetine on AMPK could be mediat-
ed by CaMKK. For this we used STO-609, which specifically 
inhibits both CaMKKα and CaMKKβ isoforms, and tested 
AMPK and ACC phosphorylation after 30 and 60 min atom-
oxetine treatment that correspond to maximal expression of 
pAMPK and pACC (Figure 2). Induction of pAMPK expres-
sion by atomoxetine as well as pACC expression were dra-
matically decreased by treatment with STO-609 in SH-SY5Y 
and U-87 MG cells (Figure 3). In SH-SY5Y cells the expres-
sion levels were decreased from 2.9- to 1.4-fold for pAMPK 
and from 2.6- to 1.0-fold for pAAC after 60 min treatment 
(Figure 3A-C). In U-87 MG cells the expression levels were 
decreased from 3.1- to 1.2-fold for pAMPK and from 2.3- to 
1.3-fold for pAAC after 60 min treatment (Figure 3D-F). These 
results show that atomoxetine activate the AMPK-ACC-CPT1 
pathway by means of CaMKKβ activity.
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Figure 3. Inhibition of CaMKKβ activity reduces pAMPK and pACC expression induction by atomoxetine. Representative western blots of 
SH-SY5Y cells treated with 5 μg/mL atomoxetine and 2.5 μg/mL STO-609 (A). Densitometric quantification of western blot data shown as 
percent ratio of pAMPK/AMPK (B) and of pACC/ACC expression (C). Representative western blots of U-87 MG cells treated with 5 μg/mL 
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DISCUSSION

In this study, we investigated the effect of atomoxetine and 
fluoxetine, two drugs that are associated with loss of appetite 
and weight, on the regulation of AMPK-ACC-CPT1 pathway 
in human brain cell lines (SH-SY5Y and U-87 MG cells). We 
show that atomoxetine and fluoxetine induce the AMPK-
ACC-CPT1 pathway (Figure 4). The specific increase in ac-
tivity of mitochondrial CPT1 induced by atomoxetine and 
fluoxetine suggests that these drugs induce mobilization of 
intracellular lipid stores to generate ATP from fatty acid 
β-oxidation in SH-SY5Y and U-87 MG cells. These findings 
seem contradictory to those observed in the frontal cortex of 

rats treated with a clinically relevant dose of clozapine, an an-
tipsychotic agent associated with heavy weight gain, where 
activation of AMPK-ACC-CPT1 pathway was also observed.17 
However, clozapine induces the isoform CPT1C and not the 
CPT1A,17 which is the opposite of what is observed in this study 
with atomoxetine and fluoxetine treatment. CPT1C proposed 
role is to facilitate palmitoyl-CoA entry into the endoplasmic 
reticulum,28 therefore it is possible that clozapine affects lipid 
composition of neuronal membranes in the frontal cortex.17 
Another reason for the discrepancy from data from the fron-
tal cortex of rats treated with clozapine may be the use of SH-
SY5Y and U-87 MG lines, which are neuroblastoma and glio-
blastoma cells in this study. The energy metabolism of cancer 
cell may differ from normal neurons.30

Our results highlight the complexity of appetite regulation 
by AMPK, which activity is hormone and tissue specific.31 For 
example, leptin activates AMPK in skeletal muscle whereas it 
has the opposite effect in the hypothalamus.32,33 Nevertheless, 
numerous studies in rat hypothalamus show that appetite is 
correlated with AMPK-ACC-CPT1 pathway activity. Malo-
nyl-CoA is markedly increased by feeding and suppressed by 
fasting.34 In agreement with this, a decrease in malonyl-CoA 
and consequent CPT1 activation in the mediobasal hypothal-
amus of rats resulted in increased food intake and obesity.35 
Conversely, genetic or biochemical inhibition of hypothalam-
ic CPT1 activity decreased food intake.36 In order to better 
understand the effect of atomoxetine, fluoxetine, and clozap-
ine in patient feeding and weight gain and in cellular AMPK 
activity it would be interesting to analyze the hypothalamus, 
as well as peripheral organs, in treated animals.

Previous studies have shown that various areas of neuro-
transmission altered by antipsychotics may affect energy and 
glucose regulation37 and that antipsychotics with the most 
intense metabolic effect are the most effective agents.38 These 
finding suggests that metabolic effects and clinical efficacy of 
psychiatric medication may not be an independent phenom-
enon but rather intricately related.4 The downstream path-
ways of AMPK involve the mammalian target of rapamycin 
(mTOR) pathway, cell cycle regulation and autophagy (a lys-
osome-dependent self-degradation process of cellular com-
ponents). These downstream pathways are implicated in 
neuronal plasticity which most likely play a major part in the 
therapeutic effects of antipsychotic medication.39,40 Therefore, 
AMPK as a metabolic sensor and a key regulator of cellular 
homeostasis may be an important player in the interaction 
between metabolic effect and clinical efficacy of psychiatric 
medication. 

Atomoxetine induce the AMPK-ACC-CPT1 pathway through 
activity of CaMKKβ in SH-SY5Y and U-87 MG cells. LKB1 
and CaMKKβ are two upstream kinases that phosphorylate 

Figure 4. Proposed metabolic model for atomoxetine and fluox-
etine effect on AMPK-ACC-CPT1 pathway in human SH-SY5Y 
and U-87 MG Cells. AMPK, adenosine monophosphate-activated 
protein kinase; ACC, acetyl-CoA carboxylase; CPT1, carnitine pal-
mitoyl transferase 1; CaMKK, calcium/calmodulin-dependent ki-
nase kinase; CoA, coenzyme A.
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Thr172 of AMPKα subunit.11,41 LKB1-dependent AMPKα 
phosphorylation at Thr172 is enhanced by the binding of 
AMP to the AMPK γ subunit.42 CaMKKβ activates AMPK in 
response to increases in cellular calcium without significant 
change in ATP/ADP/AMP ratio.43 CaMKKβ is expressed pri-
marily in the brain and therefore the calcium mediated path-
way may be the most relevant in neurons.44 Previously, it was 
reported that knockdown of CaMKKβ using siRNA increased 
cell death following oxygen-glucose deprivation (OGD), 
whereas inhibition of CaMKKβ by STO-609 significantly and 
selectively down-regulated levels of phosphorylated SIRT1 af-
ter OGD.45 Therefore, AMPK pathway activation by CaMKKβ 
was confirmed using STO-609.

Our results show that atomoxetine and fluoxetine-activat-
ed AMPK increase the phosphorylation of ACC in human 
SH-SY5Y and U-87 MG cells. Next, we showed that the acti-
vation of ACC leads to the increase in fatty acid beta oxidation 
in mitochondria. Using STO-609, we showed that AMPK-
ACC-CPT1 pathway was activated by CaMKKβ. In conclu-
sion, we show that atomoxetine and fluoxetine treatments may 
increase fatty acid β-oxidation in the mitochondria through 
activation of AMPK-ACC-CPT1 pathway in human SH-SY5Y 
and U-87 MG cells, thus mimicking fasting since AMPK is 
activated but not necessarily accompanied by increase in ap-
petite as energy is produced. One limitation of this study is 
the use of SH-SY5Y and U-87 MG lines, which are neuroblas-
toma and glioblastoma cells. Future studies are necessary to 
explore the activation of AMPK by atomoxetine and fluox-
etine after differentiation of SH-SY5Y cells into neurons, 
along with in vivo systemic metabolic effects on multiple or-
gans, such as liver, adipose tissue, muscle, and the brain. Com-
parison of fatty acid oxidation in mitochondria among differ-
ent anti-psychotics are also warranted in the future.
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