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INTRODUCTION

The number of individuals with dementia is increasing 
globally, with more than 130 million people expected to live 
with dementia in 2050.1 Alzheimer’s disease (AD) is the most 
prevalent type and cause of dementia,2 with no cure current-
ly available yet. Early detection of AD is crucial because it al-

Print ISSN 1738-3684 / On-line ISSN 1976-3026
OPEN ACCESS

lows for advanced treatment planning and improves progno-
sis. However, due to the insidious nature of the disease, more 
than 60% of people living with dementia in the community 
go undetected.3 In order to improve the accuracy and advance 
the timing of AD diagnosis, the National Institute on Aging-
Alzheimer’s Association proposed new diagnostic criteria for 
AD that incorporates neuroimaging biomarkers such as am-
yloid beta (Aβ) deposition and neuronal degeneration.4-7 As-
sessment of Aβ deposition (performed using positron emission 
tromography [PET]) is an earlier and more specific biomark-
er of AD than assessments of neurodegeneration (performed 
using magnetic structural imaging [MRI]). However, PET has 
practical drawbacks in clinical practice because they involve 
radiation and are not available in all clinical settings. 

Structural brain MRI is more widely available but less ex-
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pensive and invasive than PET. It can also detect structural 
changes related to many brain diseases other than AD. Sev-
eral recent studies,8-13 including our previous work,14 have de-
veloped artificial intelligence (AI)-based algorithms for clas-
sifying AD using structural brain MRI, with promising results 
in terms of processing time and classification accuracy. In the 
case of our previous work, our deep learning-based classifica-
tion system for AD using structural brain MRI (DLCS) dem-
onstrated excellent accuracy in classifying probable AD pa-
tients from cognitively normal controls (area under the curve 
[AUC]=0.88–0.94). However, previous studies included the 
following limitations. First, most previous studies9,10,12-14 are 
likely to have overestimated performance because the train-
ing and validation datasets were constructed by randomly 
splitting a single population into subsets, leaving its perfor-
mance in newly seen data unknown. Second, it is unclear as 
to what proportion of true AD patients and normal controls 
were used in the previous studies, because most did not con-
firm the presence or absence of Aβ deposition in their AD 
patients and normal controls, respectively.9-14 Aβ positivity is 
an important supporting evidence for presence of AD.5 When 
considering that about 12% of clinically diagnosed probable 
AD patients are Aβ-negative15 and 10%–40% of cognitively 
normal controls are Aβ-positive,16 checking for the presence 
of Aβ is an important control factor in order to exclude any 
seemingly AD cases of different etiology from the AD group 
and to exclude preclinical AD cases from the normal control 
group.14 Third, many studies10-14 only included dementia pa-
tients in their AD group, which may have exaggerated per-
formance in normal cognition (NC) vs. AD classification tasks. 
Including AD patients with mild cognitive impairment (MCI) 
is expected to offer a more comprehensive measure of the 
model’s performance across the AD continuum. 

In this study, we performed a clinical trial with a well-de-
fined case-control population that can address the aforemen-
tioned limitations in our previous work. We investigated the 
performance of the DLCS in discriminating Aβ-positive pa-
tients with MCI or AD dementia (MCI/dementia due to AD) 
from Aβ-negative cognitively normal controls, all of whom 
were from a sample independent of the population used for 
the development of the DLCS.

METHODS

Study participants
A single-center, case-controlled clinical trial was conduct-

ed and registered in the Korean Clinical Trials Registry 
(KCT0004758, 21/02/2020). Data of subjects over 50 years of 
age who visited Seoul National University Bundang Hospital 
(SNUBH) and underwent a T1-weighted MRI scan between 

January 2010 and September 2019 were retrospectively col-
lected. Our data include brain MRI scans with clinical assess-
ment and 18F-florbetaben PET scans from visitors to demen-
tia clinic at the Department of Neuropsychiatry in SNUBH 
as well as from participants of the Korean Longitudinal Study 
on Cognitive Aging and Dementia (KLOSCAD).17

A group of patients with AD and a group with NC matched 
for age and sex were screened and enrolled using the follow-
ing inclusion criteria. The AD group included patients diag-
nosed as MCI due to AD or dementia due to AD,5 according 
to the following criteria: 1) a diagnosis of probable or possi-
ble AD according to the National Institute of Neurological 
and Communicative Disorders and Stroke and the Alzheim-
er’s Disease and Related Disorders Association (NINCDS-
ADRDA) criteria, or MCI according to the International Work-
ing Group on MCI, and 2) amyloid deposition as determined 
by a positive 18F-florbetaben PET scan. The NC group in-
cluded those who 1) had no subjective cognitive complaints, 
2) had no objective cognitive decline in the Korean version of 
the Consortium to Establish a Registry for AD (CERAD-K) 
neuropsychological assessment battery, 3) were functioning 
independently in the community, and 4) had no amyloid de-
position as determined by a negative 18F-florbetaben PET scan. 
Subjects who had any of the following conditions were ex-
cluded: 1) diagnosis of dementia with a cause other than or in 
addition to AD, i.e., mixed dementia, 2) brain pathologies on 
T1-weighted MRI that may cause cognitive deficits, 3) more 
than 1 year between the date of clinical assessment and date 
of MRI scan (NC and MCI participants only), and 4) white 
matter hyperintensities with a Fazeka’s rating of 3 or higher 
on fluid-attenuated inversion recovery images.

The data of the participants were retrospectively screened 
and collected starting from April 27, 2020 to June 5, 2020 (6 
weeks). The employment of the DLCS on the data were con-
ducted between June 8, 2020 to June 19, 2020 (2 weeks).

Sample size calculation
We employed both the sensitivity and specificity of DLCS 

to AD as primary outcome measures. We calculated the sam-
ple size needed to evaluate whether DLCS performed better 
than a reference, based on a one-sided α of 2.5% (Zα=1.96), 
statistical power of 80% (Z1-β=0.842), and the results of a pilot 
study. The pilot study tested the performance of DLCS using 
a dataset consisting of 367 AD patients and 316 controls with 
NC: 130 AD and 130 NC from SNUBH and 237 AD and 186 
NC from the Alzheimer’s Disease Neuroimaging Initiative 
database. At a threshold value of 0.38, the DLCS yielded a 
sensitivity of 82.0% (95% confidence interval [CI], 77.7%–
85.8%) and specificity of 83.2% (95% CI, 78.6%–87.2%). To 
calculate the sample size n, we used the following formula18:
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where p0 is the assumed sensitivity/specificity under the null 
hypothesis H0, and p1 is the targeted sensitivity/specificity un-
der alternative hypothesis H1. The p0 and p1 values were de-
fined as the lower and higher bounds of the 95% CI of the 
sensitivity and specificity from the pilot study (p0=0.777 and 
p1=0.858 for sensitivity; p0=0.786 and p1=0.872 for specifici-
ty). The null hypothesis was that the sensitivity/specificity of 
the DLCS is less than or equal to the lower boundary of the as-
sumed sensitivity/specificity. The alternative hypothesis was 
that it is higher. Based on this, the necessary number of sub-
jects with the disease was 188, and the number of subjects 
without the disease was 162. Therefore, the final estimated 
sample size was 350 subjects, consisting of 188 patients with 
AD and 162 normal controls that were matched for age (<5 
years apart) and sex to the AD group.

Image acquisition
We acquired three-dimensional (3D) T1-weighted MR im-

ages in Digital Imaging and Communications in Medicine for-
mat using Philips Achieva and Ingenia scanners (Philips Medi-
cal Systems, Eindhoven, The Netherlands). The parameters were 
as follows: voxel dimensions=1.0×0.5×0.5 mm3, slice thick-
ness=1.0 mm, echo time=8.15 or 8.20 ms (for Achieva and 
Ingenia, respectively), repetition time=4.61 ms, flip angle=8°, 
and field of view=240×240 mm.

We acquired 18F-florbetaben PET scans in 3D using a Dis-
covery VCT scanner (General Electric Medical Systems, Mil-
waukee, WI, USA). The subjects were injected with 8.1 mCi 
(300 MBq) 18F-florbetaben (Neuraceq; Life Molecular Imag-
ing Ltd., Berlin, Germany) through a slow single intravenous 
bolus (6 MBq) in a total volume of 10 mL. After a 90-min up-
take period, 20-min PET images comprising four 5-min dy-
namic frames were obtained. Images of each time frame were 
reframed into one summed frame. Board-certified nuclear 
medicine physicians then determined Aβ-positivity based on 
visual interpretation of tracer uptake in the gray matter com-
pared to neighboring subcortical white matter in the follow-
ing four brain regions: the temporal lobes, frontal lobes, pos-
terior cingulate cortex/precuneus, and parietal lobes.

DLCS
We used VUNO Med-DeepBrain AD (version 1.0.0; VUNO 

Inc., Seoul, South Korea), which is the DLCS for AD. The 
convolutional neural network model used in VUNO Med-
DeepBrain AD has been previously described.14 Briefly, the 
DLCS uses as its backbone the Inception-V4 architecture, 
which is a 2D image classification convolutional neural net-

work that achieved very good performance with low compu-
tational cost.19 The network uses pretrained weights (https://
github.com/Cadene/pretrained-models.pytorch#inception) 
obtained from a subset of ImageNet,20 which is a training da-
taset of 1.28 million nautral images. The DLCS receives a sub-
ject’s T1-weighted image, extracts 30 coronal slices from areas 
that span the medial temporal lobe, and feeds each coronal 
slice as a separate input into the pretrained Inception-V4 ar-
chitecture. From this, the network extracts various features 
that include structural and textural information of the brain 
from the coronal slice. The feature vector is then concatenat-
ed with the subject’s age and sex information (which is input 
to the system at the beginning with the MRI scan) and the 
location information (slice number) of the coronal slice. The 
concatenated feature vector is entered into a fully connected 
network that calculates the probability of the slice belonging 
to that of a patient with AD. The probabilities of each slice are 
averaged to calculate a final score that represents the subject’s 
probability of having AD (score ranges from 0 to 1). 

In this clinical trial, we processed the MRI data of subjects 
anonymously, omitting information that could identify the 
individual (name, sex, birth date, and hospital number). A re-
searcher (K.J.S.), who was blinded to the subjects’ clinical di-
agnoses and did not participate in the construction of the study 
dataset, performed the processing of the subjects’ data with 
DLCS. The DLCS was installed on a desktop PC with the fol-
lowing specifications: Intel hexa-core 2.90 GHz CPU with 16 
GB RAM running on Ubuntu 18.04.4 LTS.

Statistical analysis
We evaluated the accuracy of the DLCS in the diagnosis of 

AD by comparing its output (a continuous probability rang-
ing from 0 to 1) with the subject’s clinical diagnosis. We de-
fined sensitivity and specificity as the primary outcomes, and 
the area under the receiver operating characteristic curve (AUC) 
as the secondary outcome. We calculated the outcomes on the 
whole dataset, as well as in sex, age, and Mini-Mental State Ex-
amination (MMSE) subgroups. The age groups were divided 
into ≥75 years and <75 years of age, based on the median age 
of 75 years. The MMSE subgroups were divided into ≥26 and 
<26 scores. In addition, in a subgroup of subjects with MMSE 
scores, we compared the performance of DLCS with that of 
MMSE score for the diagnosis of all AD (MCI and dementia 
due to AD as well as of just MCI due to AD), on the basis of 
the following evaluation metrics: AUC, accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative pre-
dictive value (NPV).

For demographics, continuous variables were compared 
using independent samples t-test, and categorical variables 
were compared using the chi-square test between groups. We 

https://github.com/Cadene/pretrained-models.pytorch#inception
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estimated the 95% CI of sensitivity and specificity using the 
Clopper-Pearson method21 and the AUC using the DeLong 
test.18 For comparison of evaluation metrics between sex-, 
age-, and MMSE-subgroups, we used chi-square test. In the 
comparison of evaluation metrics between the DLCS and 
MMSE, we used McNemar test22 for comparing accuracy, 
sensitivity, and specificity, and two-sample z-test for compar-
ing PPV and NPV. All statistical analyses were performed 
using IBM SPSS, version 20 (IBM Corp., Armonk, NY, USA) 
and MedCalc (version 16.4.3; MedCalc Software, Mariaker-
ke, Belgium).

Standard protocol approvals, registrations, 
and patient consents

This clinical trial (Korean Clinical Trials Registry identifi-
er: KCT0004758) was approved by the Ministry of Food and 
Drug Safety in South Korea and the Institutional Review Board 
of SNUBH (E-2001/588-001). The design and conduct of 
this study were in accordance with the principles outlined in 
the Declaration of Helsinki.23 Because this clinical trial was 
conducted retrospectively, participation consent forms from 

subjects or legal guardians of the subjects were waived. All 
methods were carried out in accordance with relevant guide-
lines and regulations.

RESULTS

We enrolled a total of 350 subjects who met the eligibility 
criteria, with 162 (46.3%) in the NC group and 188 (53.7%) in 
the AD group. The demographic and clinical characteristics 
of the participants are summarized in Table 1. The mean age 
of the whole dataset was 73.3±7.23 (range, 55 to 92) years. Age 
and sex were comparable between the NC and AD groups, 
while years of education were higher in the NC group. In the 
patient group, 76 (40.4%) had MCI due to AD, the rest had 
dementia due to AD (12 [6.4%] possible AD and 99 [52.7%] 
probable AD). All participants with MCI due to AD had a 
clinical dementia rating (CDR) score of 0.5. Among the 112 
participants with AD dementia, 68 (60.7%) had a CDR score 
of 0.5, 35 (31.3%) had a CDR score of 1, and the rest (8.0%) 
had a CDR score of 2 or 3. The models of MR scanners were 
comparable, while the type of head coil was different between 

Table 1. Subject characteristics

Characteristics NC (N=162)* AD (N=188)† t or χ2‡ p‡

Age (yr) 73.3±6.9 73.9±7.4 -0.8 0.42
Age band 13.650 0.009

50–59 yr 0 (0.0) 12 (6.4)
60–69 yr 46 (28.4) 36 (19.1)
70–79 yr 84 (51.9) 96 (51.1)
80–89 yr 32 (19.7) 43 (22.9)
≥90 yr 0 (0.0) 1 (0.5)

Female 108 (66.6) 125 (66.5) 0.001 0.97
Education (yr) 12.4±4.5 11.1±4.9 2.57 0.01
MMSE (score) 27.5±2.2 20.9±4.9 16.21 <0.001
MRI 

Scanner 1.64 0.44
Philips Achieva 137 (84.6) 167 (88.8)
Philips Ingenia 20 (12.3) 18 (9.6)
Philips Ingenia CX 5 (3.1) 3 (1.6)

Head coil 63.79 <0.001
SENSE-Head-8 73 (45.1) 39 (20.7)
SENSE-NV-16 15 (9.3) 89 (47.4)
Dual coil 42 (25.9) 39 (20.7)
Multi coil 32 (19.7) 21 (11.2)

WMH (cc) 14.3±29.6 16.0±17.5 -0.64 0.52
Values are presented as mean±standard deviation or number (%). *cognitively normal having clinical dementia rating of 0 and amyloid-β-
negative; †amyloid-β-positive dementia due to AD or amyloid-β-positive mild cognitive impairment due to AD; ‡Student’s t-test for continu-
ous variables and chi-square test for categorical variables. NC, normal control; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examina-
tion; WMH, white matter hyperintensity; MRI, magnetic resonance imaging 
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the two groups. The volume of white matter hyperintensity 
was comparable between the NC and AD groups.

As summarized in Figure 1, the DLCS demonstrated a good 
diagnostic performance in the classification of AD. The DLCS 
had a sensitivity for AD of 85.6% (95% CI, 79.8%–90.3%), and 
the lower bound of 95% CIs for its sensitivity was higher than 
the assumed value of 77.7%. Its specificity for AD was 90.1% 
(95% CI, 84.5%–94.2%), and the lower bound of 95% CIs for 
its specificity was higher than the assumed value of 78.6%. Its 
accuracy, PPV, and NPV for AD were 87.7%, 91.0%, and 84.4%, 
respectively. The AUC of DLCS for AD classification was 0.937 
(95% CI, 0.911–0.963).

The distribution of the DLCS probability scores for each 
cognitive group, NC, MCI, and dementia, are shown as histo-
grams and boxplots in Figure 2. 

Further analyses were conducted in various subgroups, 
summarized in Table 2. When analyzed separately in the male 
and female subgroup (n=117 and 233, respectively), there were 
no significant differences in sensitivity, specificity, and AUC. 
When analyzed separately in each age group, sensitivity was 
higher in the ≥75 years group (n=186), while specificity was 
higher in the <75 years group (n=164). There were no signif-
icant age-wise differences in AUC. In the comparison between 

participants stratified by MMSE score (≥26 vs. <26), the AUC 
was comparable between the two MMSE subgroups. Howev-
er, specificity was higher in the subgroup with MMSE of ≥26 
(n=166), whereas sensitivity was higher in the subgroup with 
MMSE of <26 (n=179). 

Table 3 summarizes results of the comparative analysis be-
tween DLCS and MMSE in a subgroup who have MMSE 
scores. In the diagnosis of AD (n=345), the AUC of DLCS 
(AUC, 0.936; 95% CI, 0.905–0.960) was larger than the AUC 
of MMSE score (AUC, 0.907; 95% CI, 0.871–0.935) by a mar-
ginally larger value (p=0.0718). The sensitivity and specificity 
of DLCS were 85.8% (95% CI, 79.9%–90.5%) and 90.1% (95% 
CI, 84.5%–94.2%). At a cutoff value of 25 indicated by the 
Youden’s index, the MMSE had a sensitivity of 78.1% (95% 
CI, 71.4%–83.9%) and specificity of 91.4% (95% CI, 85.9%–

30

20

10

0

N
um

be
r

0.0                0.2                0.4                0.6                0.8                 1.0

Dementia

Probability score

30

20

10

0

N
um

be
r

0.0                0.2                0.4                0.6                0.8                 1.0

NC

Probability score

30

20

10

0

N
um

be
r

0.0                0.2                0.4                0.6                0.8                 1.0

MCI

Probability score

Figure 2. AD probability scores for each clinical diagnostic group. 
Histograms and boxplots of the generated probability scores, rang-
ing from 0 to 1, for NC and patients with MCI and dementia. In the 
boxplots, the line indicate the median, the box indicates 25% and 
75% quartiles, and the whiskers bound the 9% and 91%. AD, Al-
zheimer’s disease; NC, normal control; MCI, mild cognitive impair-
ment.
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Figure 1. Receiver operating characteristic curve of Alzheimer’s 
disease discrimination. The ROC curve and AUC (95% CI) for the 
DLCS in the discrimination between amyloid-negative normal con-
trols and amyloid-positive patients with Alzheimer’s disease are 
shown. The threshold value of 0.38 is shown as the red circle. Re-
sults for other evaluation metrics (with 95% CI in parentheses) are: 
ACC=87.7 (83.8–91.0), SEN=85.6 (79.8–90.3), SPE=90.1 (84.5–
94.2), PPV=91.0 (86.3–94.1), and NPV=84.4 (79.2–88.5). AUC, area 
under the curve; CI, confidence intervals; ROC, receiver operator char-
acteristic; DLCS, deep learning-based classification system; ACC, ac-
curacy; SEN, sensitivity; SPE, specificity; PPV, positive predictive val-
ue; NPV, negative predictive value.
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95.2%). The sensitivity of DLCS was stastistically significantly 
higher than that of MMSE (p=0.034). In the diagnosis of pa-
tients with MCI due to AD (n=238), the AUC of DLCS (AUC, 
0.877; 95% CI, 0.829–0.916) was marginally higher than that 
of MMSE (AUC, 0.823; 95% CI, 0.768–0.869). The sensitivity 

and specificity of DLCS were 73.7% (95% CI, 62.3%–83.1%) 
and 90.1% (95% CI, 84.5%–94.2%), and that of MMSE were 
59.2% (95% CI, 47.3%–70.4%) and 91.4 (95% CI, 85.9%–95.2%), 
respectively.

DISCUSSION

In this clinical trial, we evaluated the use and performance 
of a DLCS in the identification of an individual’s risk of AD. 
To the best of our knowledge, this is the first clinical trial in 
the field of AI-based AD diagnosis to obtain regulatory ap-
proval as a class III medical device from the Ministry of Food 
and Drug Safety. 

The results of this clinical trial demonstrate that the DLCS 
has excellent diagnostic performance for AD, according to 
the criteria of excellent biomarkers proposed by the Ronald 
and Nancy Reagan Research Institute of the Alzheimer’s As-
sociation and the National Institute on Aging Working Group 
on “Molecular and Biochemical Markers of Alzheimer’s Dis-
ease.”24 The working group suggested that an excellent evalu-
ating biomarker should have a sensitivity approaching or ex-
ceeding 85%, a specificity of approximately 75%–85% or 
greater, and a PPV of approximately 80% or more. The sensi-
tivity, specificity, and PPV of the DLCS were 85.8%, 90.1%, 
and 90.8%, respectively, which met the requirements proposed 
by the working group. This is also comparable to or better than 
that of existing methods. The clinical diagnosis of probable 
AD according to the NINCDS-ADRDA criteria has shown a 
sensitivity of 70.9%–75.3% and a PPV of 59.5%–70.8% for au-
topsy-proven AD.25 Fluorodeoxyglucose PET has sensitivities 
of 84% and 75.8% and specificites of 74% and 74.3% for au-
topsy-proven AD26 and amyloid PET-proven AD,27 respec-

Table 2. Performance metrics according to sex, age, and Mini-Mental Status Examination score

Variable AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)
Sex

Male 0.931 (0.882–0.980) 82.5 (70.9–90.9) 92.6 (82.1–97.9)
Female 0.941 (0.911–0.972) 87.2 (80.0–92.5) 88.9 (81.4–94.1)
p 0.730    0.523 0.642

Age
≥75 yr 0.952 (0.922–0.982) 93.1 (86.2–97.1) 83.5 (73.9–90.7)
<75 yr 0.936 (0.896–0.976) 77.0 (66.8–85.4) 97.4 (90.9–99.7)
p 0.541    0.003 0.007

MMSE
≥26 points 0.853 (0.790–0.903) 61.3 (42.2–78.2) 92.6 (86.8–96.4)
<26 points 0.907 (0.854–0.945) 90.8 (85.0–94.9) 77.8 (57.8–91.4)
p 0.346 <0.001 0.019

AUC, area under the curve; CI, confidence intervals; MMSE, Mini-Mental Status Examination

Table 3. Comparison of diagnostic performance metrics between 
DLCS and Mini-Mental Status Examination

Variable DLCS MMSE p
For all AD

AUC 0.936 
(0.905–0.960)

0.907 
(0.871–0.935)

0.0718

Accuracy 0.878 
(0.839–0.911)

0.844 
(0.801–0.880)

0.0440

Sensitivity (%) 85.8 (79.9–90.5) 78.1 (71.4–83.9) 0.0336
Specificity (%) 90.1 (84.5–94.2) 91.4 (85.9–95.2) 0.8145
PPV 90.8 (86.0–94.0) 91.1 (86.0–94.4) 0.9243
NPV 84.9 (79.7–88.9) 78.8 (73.7–83.0) 0.1313

For MCI due to AD
AUC 0.877 

(0.829–0.916)
0.823 

(0.768–0.869)
0.0922

Accuracy 0.849 
(0.797–0.892)

0.811 
(0.755–0.859) 

0.0725

Sensitivity (%) 73.7 (62.3–83.1) 59.2 (47.3–70.4) 0.0522
Specificity (%) 90.1 (84.5–94.2) 91.4 (85.9–95.2) 0.8145
PPV 77.8 (68.3–85.0) 76.3 (65.3–84.6) 0.8392
NPV 88.0 (83.3–91.4) 82.7 (78.4–86.3) 0.1618

Values in the parentheses are 95% confidence intervals. DLCS, deep 
learning-based classification system; MMSE, Mini-Mental Status 
Examination; AD, amyoid-β-positive Alzheimer’s disease; AUC, 
area under the curve; PPV, positive predictive value; NPV, negative 
predictive value



JB Bae et al. 

   www.psychiatryinvestigation.org  1201

tively. Cerebral blood flow single-photon emission computed 
tomography (SPECT) showed sensitivies of 63% and 42.9% 
and specificities of 82% and 82.9% for autopsy-proven AD28 
and amyloid PET-proven AD,27 respectively. 

The DLCS was evaluated in relation to convetional mea-
sures such as MMSE score. As seen in Table 2, the notable 
specificity of the DLCS for AD in a population with high 
MMSE score is pivotal because it offers the potential to be 
used in conjunction with highly sensitive quick cognitive tests 
in AD diagnosis. Also as seen in Table 3, the DLCS exhibited 
a slightly higher AUC and significantly higher sensitivity in 
detecting dementia or MCI due to AD compared to MMSE. 
This has clinical implications, given that the preclinical and 
prodromal phases of AD last for more than a decade. The DLCS 
shows potential to be used as a means to increase the sensi-
tivity of the diagnosis of AD, especially when combined with 
cognitive tests such as the MMSE.

The rate of undetected dementia in community-dwelling 
elderly is pooled to be 61.7% (95% CI=55.0%–68.0%), ac-
cording to a meta-analysis.3 The rate of undetected cases of 
dementia due to AD, which is the largest cause of dementia, is 
even higher because of its slow progressive onset.29 This war-
rants a method that can effectively and accurately diagnose 
AD in its early stages. While amyloid PET30 has the potential 
to detect AD in its preclinical stages, their use in clinical set-
tings is restricted to cases of diagnostic uncertainty in patients 
with cognitive impairment.31 In contrast, structural brain MRI 
is also capable of detecting early changes32-35 and have the ad-
ditional benefit of being widely administered for a variety of 
purposes such as diagnosing various types of dementia and 
neurologic disorders and even for health checkups. Thus, uti-
lizing structural MRI allows for an opportunity to screen a 
broader range of individuals for possible dementia. 

The DLCS offers a structural brain MRI-based diagnosis of 
AD, with strengths that allow ease of use in clinical practice. 
The DLCS takes 3 simple inputs–patient age, patient gender, 
and a T1-weighted MRI scan of the patient. Once uploaded, 
it outputs the result (probability of the subject having AD), 
within 23 seconds. The DLCS uses a pre-learned neural net-
work, which eliminates the need for other preprocessing steps,14 
and extracts information that is expected to comprehensively 
reflect volumetric, shape, and textural information. The short 
processing time and simplicity of use make it feasible to use 
in clinical settings, in contrast to other previously developed 
structural MRI-based diagnostic markers32-35 that have good 
diagnostic performance but require heavy data processing and 
longer processing time. Furthermore, the DLCS can be em-
bedded to clinical routine workflow such that MRI scans tak-
en for whichever purpose can be quickly and efficiently screened 
for possible AD. This can extend AD screening to patients who 

had visited the hospital for reasons other than cognitive com-
plaints, and may help clinicians to catch potential AD cases that 
may otherwise go unnoticed and direct them for a fuller bat-
tery of tests that can lead to a timely diagnosis of AD.

To accurately assess the performance of DLCS for AD, our 
study population consisted of amyloid PET-confirmed cases 
of AD and non-AD. This contrasts with most previous studies 
which used clinical diagnosis as the criteria for defining the 
AD group and control group.9-13 Clinically determined AD de-
mentia patients may have AD-like symptoms but not actually 
have AD pathology, and cognitively normal-seeming individ-
uals may have underlying amyloid pathology in which case 
they would be recognized as preclinical AD.16 Thus we used 
amyloid PET results to prevent enrollment of non-AD demen-
tia cases to the AD patient group and preclinical AD cases to 
the normal control group, thereby minimizing misclassifica-
tion bias.

Second, we included patients with MCI due to AD in the 
patient group so that we can see the performance of DLCS in 
detecting AD from varying degrees of cognitive deficits along 
the AD continuum.5 This allows for a more accurate assess-
ment of the software’s ability to discriminate AD across the 
cognitive severity spectrum.

Identifying AD in MCI patients due to AD proved to be a 
challenge, as shown in the wide distribution of probability 
scores for MCI patients in Figure 2. This may be attributed to 
MCI being a heterogenous group with structural brain chang-
es that are not as different from that of NC. It was also ob-
served in the age and sex subgroup analysis that the propor-
tion of MCI patients in the AD group may affect the DLCS 
performance. The relatively lower sensitivity values in the male 
and younger groups may be associated with the higher pro-
portion of MCI patients in the AD group in the male subgroup 
(47.6%) compared to the female subgroup (37.6%), and in the 
younger group (48.3%) compared to the older group (34.7%). 
However, it is noteworthy that our proposed method was 
trained only on NC and possible/probable AD patients, and 
that the MCI patients are completely newly seen data to the 
DLCS. This supports the potential of MRI-based deep learn-
ing methods for AD classification, and further studies involv-
ing training with MCI patients included should lead to more 
promising results in the future. 

It should be noted that composition of AD patients can be 
different across studies, depending on their definition of the 
AD group. In general, AD diagnosis is used to refer to detec-
tion of AD patients as defined by clinical diagnostic criteria. 
In this paper, because our interest was in detecting patients 
with amyloid PET-proven AD, AD diagnosis refers to detec-
tion of MCI due to AD and dementia due to AD,5 which re-
quires amyloid positivity in addition to clinically diagnosed 
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MCI and clinically diagnosed AD. This diagnostic criteria of 
AD5 was proposed for research purposes but it is also widely 
used in clinical practice,36 which supports our use of it for this 
clinical study. It should also be noted that there are also cases 
in clinical settings where the clinical trajectory seems like that 
of AD but are amyloid-negative (suspected non-Alzheimer’s 
pathophysiology, SNAP). Future studies focusing on discrimi-
nating between SNAP and AD will be necessary to ensure ac-
curate detection of AD. 

There are several technical considerations to be addressed. 
First, all MRI scans used in this study were acquired from a 
single scanner (Philips) using the same protocol. Therefore, 
the performance of the DLCS on scans from other vendors or 
protocols remains to be determined. Second, the DLCS cur-
rently only takes 3D T1-weighted images as input data because 
3D scans contain higher anatomical detail and resolution than 
conventional 2D scans. However, 3D scans are not available 
in all clinical settings, which may restrict the use of DLCS to 
fewer settings. Third, it is not clear which features contribute 
to the predictions made by the DLCS, which can undermine 
the explainability of the results. Increasing the explainability 
and interpretability of deep learning algorithms will be crucial 
in increasing the trustworthiness of the technology for use in 
the medical domain. This is an unresolved issue that is cur-
rently the topic of many recent research.37

In conclusion, DLCS, a software as a medical device using 
structural brain MRI, demonstrated excellent diagnostic per-
formance for MCI or dementia due to AD. When used together 
during screening of MRI, taken for whichever purpose, DLCS 
may help improve the early detection of AD.
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