1. Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA 2007;298:1685-1687.
3. Soung NK, Kim BY. Psychological stress and cancer. J Anal Sci Technol 2015;6:30
5. Friganović A, Selič P, Ilić B, Sedić B. Stress and burnout syndrome and their associations with coping and job satisfaction in critical care nurses: a literature review. Psychiatr Danub 2019;31(Suppl 1):21-31.
6. Kim JH. The relationship between employee’s work-related stress and work ability based on qualitative literature analysis. J Ind Distrib Bus 2021;12:15-25.
7. Sharma S, Singh G, Sharma M. A comprehensive review and analysis of supervised learning and soft computing techniques for stress diagnosis in humans. Comput Biol Med 2021;134:104450
8. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav 1983;24:385-396.
9. Roth AJ, Kornblith AB, Scher HI, Holland JC. Rapid screening for psychologic distress in men with prostate carcinoma: a pilot study. Cancer 1998;82:1904-1908.
10. Schultebraucks K, Yadav V, Shalev AY, Bonanno GA, Galatzer-Levy IR. Deep learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood. Psychol Med 2022;52:957-967.
11. Paulmann S, Furnes D, Bøkenes AM, Cozzolino PJ. How psychological stress affects emotional prosody. PLoS One 2016;11:e0165022.
13. Titze IR. Principles of voice production. Iowa City: National Center for Voice and Speech; 2000.
14. Sondhi S, Munna K, Vijay R, Salhan A. Vocal indicators of emotional stress. Int J Comput Appl 2015;122:38-43.
15. Lu H, Frauendorfer D, Rabbi M, Mast MS, Chittaranjan GT, Campbell AT, et al. StressSense: detecting stress in unconstrained acoustic environments using smartphones. UbiComp’12: Proceedings of the 2012 ACM Conference on Ubiquitous Computing; 2012 Sep 5-8; Pittsburgh, United States. New York: Association for Computing Machinery; 2012. p. 351-360.
16. Teager H. Some observations on oral air flow during phonation. IEEE Trans Acoust Speech Signal Process 1980;28:599-601.
17. Ahamad A, Christian N, Luling, Lodhi AK, Mamodiya U, Khan IR. Evaluating AI system performance by recognition of voice during social conversation. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I); 2022 Dec 14-16; Uttar Pradesh, India. New York: Institute of Electrical and Electronics Engineers (IEEE); 2022. p. 149-154.
18. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification using deep convolutional neural networks. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ, editors. 26th Annual Conference on Neural Information Processing Systems 2012; 2012 Dec 3-6; Lake Tahoe, United States. New York: Institute of Electrical and Electronics Engineers (IEEE); 2012. p. 1-9.
19. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. Parallel distributed processing: explorations in the microstructure of cognition. Cambridge: The MIT Press, 1986, p. 318-362.
20. Desplanques B, Thienpondt J, Demuynck K. ECAPA-TDNN: emphasizes channel attention, propagation, and aggregation in a TDNNbased speaker verification. INTERSPEECH 2020; 2020 Oct 25-29; Shanghai, China. 2020. p. 3830-3834.
21. Hu J, Shen L, Albanie S, Sun G, and Wu E. Squeeze-and-excitation networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2018 Jun 18-22; Salt Lake City, United States. 2018. p. 7132-7141.
22. Dawalatabad N, Ravanelli M, Grondin F, Thienpondt J, Desplanques B, Na H. ECAPA-TDNN embedding for speaker diarisation. In: editors. INTERSPEECH 2021; 2021 Aug 30-Sep 3; Brno, Czechia. 2021. p.3560-3564.
23. Gulati A, Qin J, Chiu CC, Parmar N, Zhang Y, Yu J, et al. Conformer: convolution-augmented transformer for speech recognition. INTERSPEECH 2020; 2020 Oct 25-29; Shanghai, China. 2020. p. 5036-5040.
24. Zhu Y, Ko T, Snyder D, Mak B, Povey D. Self-atentive speaker embedding for text-independent speaker verification. INTERSPEECH 2018; 2018 Sec 2-6; Hyderabad, India. 2018. p. 3573-3577.
25. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998;59(Suppl 20):22-33.
26. Yoo SW, Kim YS, Noh JS, Oh KS, Kim CH, Namkoong K, et al. [Validity of the Korean version of the Mini-International Neuropsychiatric Interview]. Anxiety Mood 2006;2:50-55. Korean.
27. Schwabe L, Dalm S, Schächinger H, Oitzl MS. Chronic stress modulates the use of spatial and stimulus-response learning strategies in mice and man. Neurobiol Learn Mem 2008;90:495-503.
28. Schwabe L, Wolf OT. Stress prompts habit behavior in humans. J Neurosci 2009;29:7191-7198.
29. Jacobsen PB, Donovan KA, Trask PC, Fleishman SB, Zabora J, Baker F, et al. Screening for psychological distress in ambulatory cancer patients: a multicenter evaluation of the Distress Thermometer. Cancer 2005;103:1494-1502.
31. Sousa H, Oliveira J, Figueiredo D, Ribeiro O. The clinical utility of the Distress Thermometers in non-oncological contexts: a scoping review. J Clin Nurs 2021;30:2131-2150.
32. Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 2009;34:163-171.
33. Dressendorfer RA, Kirschbaum C, Rohde W, Stahl F, Strasburger CJ. Synthesis of a cortisol-biotin conjugate and evaluation as a tracer in an immunoassay for salivary cortisol measurement. J Steroid Biochem Mol Biol 1992;43:683-692.
34. Flanagan JL. Speech analysis, synthesis and perception (2nd ed). New York, Heidelberg, Berlin: Springer Verlag; 1972.
35. Thienpondt J, Desplanques B, Demuynck K. Integrating the frequency translational invariance in TDNNs and frequency positional information in 2D ResNets to enhance speaker verification. INTERSPEECH 2021; 2021 Aug 30-Sep 3; Brno, Czechia. 2021. p. 2302-2306.
36. Xue J, Deng Y, Han Y, Li Y, Sun J, Liang J. ECAPA-TDNN for multispeaker text-to-speech synthesis. In: Lee KA, Lee H, Lu Y, Dong M, editors. 2022 13th International Symposium on Chinese Spoken Language Processing (ISCSLP); 2022 Dec 11-14; Singapore. 2021. p. 230-234.
37. Kang W, Alam J, Fathan A. Deep-learning-based end-to-end spoken language identification system for domain-mismatched scenarios. 13th Conference on Language Resources and Evaluation (LREC 2022); 2022 Jun 20-25; Marseille, France. 2022. p. 7339-7343.
38. Kumawat P, Routray A. Applying TDNN architectures to analyze the duration dependencies of speech emotion recognition. INTERSPEECH 2021; 2021 Aug 30-Sep 3; Brno, Czechia. 2021. p. 3410-3414.
39. Yang B, Yih W, He X, Gao J, Deng L. Embedding entities and relations for learning and inference in knowledge bases. The 3rd International Conference on Learning Representations (ICLR) 2015; 2015 May 7-9; San Diego: United States. 2015.
40. Han H, Byun K, Kang HG. A deep learning-based stress-detection algorithm with speech signals. Workshop on Audiovisual Scene Understanding for Immersive Multimedia 2018; 2018 Oct 26; Seoul: Korea. New York: United States; 2018.
41. World Health Organization. Mental health and COVID-19: early evidence of the pandemic’s impact [Internet]. Scientific Brief 2 (March). Available at:
http://www.jstor.org/stable/resrep44578. Accessed Jun 25, 2024.