1. Trivedi MH, Morris DW, Grannemann BD, Mahadi S. Symptom clusters as predictors of late response to antidepressant treatment. J Clin Psychiatry 2005;66:1064-1070. PMID:
16086624.
2. Bares M, Brunovsky M, Novak T, Kopecek M, Stopkova P, Sos P, et al. The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur Neuropsychopharmacol 2010;20:459-466. PMID:
20421161.
3. O'Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 2007;62:1208-1216. PMID:
17573044.
4. Im C, Lee C. Computer-aided performance evaluation of a multichannel transcranial magnetic stimulation system. IEEE Trans Magn 2006;42:3803-3808.
5. Arns M, Drinkenburg WH, Fitzgerald PB, Kenemans JL. Neurophysiological predictors of non-response to rTMS in depression. Brain Stimul 2012;5:569-576. PMID:
22410477.
6. Price GW, Lee JW, Garvey C, Gibson N. Appraisal of sessional EEG features as a correlate of clinical changes in an rTMS treatment of depression. Clin EEG Neurosci 2008;39:131-138. PMID:
18751562.
7. Micoulaud-Franchi JA, Richieri R, Cermolacce M, Loundou A, Lancon C, Vion-Dury J. Parieto-temporal alpha EEG band power at baseline as a predictor of antidepressant treatment response with repetitive transcranial magnetic stimulation: a preliminary study. J Affect Disord 2012;137:156-160. PMID:
22244378.
8. Kito S, Hasegawa T, Koga Y. Cerebral blood flow ratio of the dorsolateral prefrontal cortex to the ventromedial prefrontal cortex as a potential predictor of treatment response to transcranial magnetic stimulation in depression. Brain Stimul 2012;5:547-553. PMID:
22019081.
9. Richieri R, Boyer L, Farisse J, Colavolpe C, Mundler O, Lancon C, et al. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression. Eur J Nucl Med Mol Imaging 2011;38:1715-1722. PMID:
21647787.
10. Bares M, Brunovsky M, Kopecek M, Stopkova P, Novak T, Kozeny J, et al. Changes in QEEG prefrontal cordance as a predictor of response to antidepressants in patients with treatment resistant depressive disorder: a pilot study. J Psychiatr Res 2007;41:319-325. PMID:
16889798.
11. Khodayari A, Reilly J, Hasey G, DeBruin H, MacCrimmon D. Using Pre-treatment Electroencephalography Data to Predict Response to Transcranial Magnetic Stimulation Therapy for Major Depression In: 33rd Annual International Conference of the IEEE EMBS Boston; August 2011; Massachusetts USA.
12. Khodayari-Rostamabad A, Reilly JP, Hasey GM, de Bruin H, Maccrimmon DJ. A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder. Clin Neurophysiol 2013;124:1975-1985. PMID:
23684127.
13. Arns M, Cerquera A, Gutiérrez RM, Hasselman F, Freund JA. Non-linear EEG analyses predict non-response to rTMS treatment in major depressive disorder. Clin Neurophysiol 2014;125:1392-1399. PMID:
24360132.
14. Leuchter AF, Cook IA, Lufkin RB, Dunkin J, Newton TF, Cummings JL, et al. Cordance: a new method for assessment of cerebral perfusion and metabolism using quantitative electroencephalography. Neuroimage 1994;1:208-219. PMID:
9343572.
15. Leuchter AF, Uijtdehaage SH, Cook IA, O'Hara R, Mandelkern M. Relationship between brain electrical activity and cortical perfusion in normal subjects. Psychiatry Res 1999;90:125-140. PMID:
10482384.
17. Tarhan N, Sayar GH, Tan O, Kagan G. Efficacy of high-frequency repetitive transcranial magnetic stimulation in treatment-resistant depression. Clin EEG Neurosci 2012;43:279-284. PMID:
23185087.
18. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23:56-62. PMID:
14399272.
19. Sivanandam N, Sumathi S, Deepa S. Introduction to Neural Networks Using MATLAB 6.0. New Delhi: Tata McGraw-Hill Publishing company Limited; 2008.
20. Mumtaz K, Sheriff S, Duraiswamy K. Evaluation of Three Neural Network Models using Wisconsin Breast Cancer Database In: International Conference on Control, Automation, Communication and Energy Conservation; 2009.
21. Lek S, Guegan JF. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 1999;120:65-73.
22. Yoon Y, Swales G, Margavio TM. A comparison of discriminant analysis versus artificial neural networks. J Oper Res Soc 1993;44:51-60.
23. Kim JW, Weistroffer HR, Redmond RT. Expert systems for bond rating: a comparative analysis of statistical, rule based, and neural network systems. Expert Syst 1993;10:167-172.
24. Patuwo E, Hu M, Hung M. Two-group classification using neural networks. Decision Sci 1993;24:825-845.
25. Sexton RS, Dorsey RE. Reliable classification using neural networks: a genetic algorithm and backpropagation comparison. Decision Support Syst 2000;30:11-22.
26. Li YJ, Fan FY. Classification of Schizophrenia and depression by EEG with ANNs In: Proceedings Int. Conf. of the IEEE Eng; In Medicine and Biology Society; New York. 2005.
27. Trambaiolli LR, Lorena AC, Fraga FJ, Kanda PA, Anghinah R, Nitrini R. Improving Alzheimer's disease diagnosis with machine learning techniques. Clin EEG Neurosci 2011;42:160-165. PMID:
21870467.
28. Yuan Q, Zhou W, Zhang J, Li S, Cai D, Zeng Y. EEG classification approach based on the extreme learning machine and wavelet transform. Clin EEG Neurosci 2012;43:127-132. PMID:
22715486.
29. Leuchter AF, Cook IA, Marangell LB, Gilmer WS, Burgoyne KS, Howland RH, et al. Comparative effectiveness of biomarkers and clinical indicators for predicting outcomes of SSRI treatment in major depressive disorder: Results of the BRITE-MD study. Psychiatry Res 2009;169:124-131. PMID:
19712979.
30. Cook IA, Hunter AM, Abrams M, Siegman B, Leuchter AF. Midline and right frontal brain function as a physiologic biomarker of remission in major depression. Psychiatry Res 2009;174:152-157. PMID:
19853417.