1. Ozgur C, Kleckner M, Li Y. Selection of Statistical Software for Solving Big Data Problems: A Guide for Businesses, Students, and Universities. SAGE Open; 2015, p. 1-12.
3. McAfee A, Brynjolfsson E. Big data: the management revolution. Harv Bus Rev 2012;90:60-66.
4. Sagiroglu S, Sinanc D. Big Data: A Review. IEEE Int Conf Collab Technol Syst (CTS) 2013;42-47.
9. Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) National Human Genome Research Institute. Available at:
www.genome.gov/sequencingcostsdata. Accessed Apr 25, 2018.
11. Nuwer MR. The development of EEG brain mapping. J Clin Neurophysiol 1990;7:459-471.
12. Turing AM. Computing Machinery and Intelligence. In: Epstein R, editor. Parsing the Turing Test. 1. Dordrecht: Springer, 2009, p. 23-65.
13. Kohavi R, Provost F. Glossary of terms. Mach Learn 1998;30:271-274.
14. Zhou L, Pan S, Wang J, Vasilakos AV. Machine learning on big data: opportunities and challenges. Neurocomputing 2017;237:350-361.
15. Mullainathan S, Spiess J. Machine learning: an applied econometric approach. J Econ Perspect 2017;31:87-106.
17. Tsai CW, Lai CF, Chao HC, Vasilakos AV. Big data analytics: a survey. J Big Data 2015;2:1-32.
18. Kaura P, Sharmab M, Mittalc M. Big data and machine learning based secure healthcare framework. Procedia Comput Sci 2018;132:1049-1059.
20. Zhang GP. Avoiding pitfalls in neural network research. IEEE Trans Syst Man Cybern C Appl Rev 2007;37:3-16.
22. Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst Appl 1998;13:18-28.
23. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 2001;29:1189-1232.
24. Liaw A, Wiener M. Classification and regression by RandomForest. R News 2002;2:18-22.
25. Rish I. An empirical study of the naive Bayes classifier. IJCAI 2001 Work Empir Methods Artif Intell 2001;3:41-46.
26. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967;13:21-27.
27. Duan KB, Keerthi SS. Which Is the Best Multiclass SVM Method? An Empirical Study. In: Oza NC, Polikar R, Kittler J, Polikar R, editor. Multiple Classifier Systems. MCS 2005. Lecture Notes in Computer Science, vol 3541. Berlin, Heidelberg: Springer, 2005, p. 278-285.
28. Khoshgoftaar TM, Golawala M, Van Hulse J. An empirical study of learning from imbalanced data using random forest. ICTAI 2007 2007;2:310-317.
29. Lin Y, Jeon Y. Random forests and adaptive nearest neighbors. J Am Stat Assoc 2006;101:578-590.
30. Mason L, Baxter J, Bartlett PL, Frean MR. Boosting algorithms as gradient descent. Adv Neural Inf Process Syst 2000;512-518.
31. Schapire RE. The Boosting Approach to Machine Learning: An Overview. In: Denison DD, Hansen MH, Holmes CC, Mallick B, Yu B, editor. Nonlinear Estimation and Classification. Lecture Notes in Statistics, vol 171. New York: Springer, 2003, p. 149-171.
35. Schnack HG, Nieuwenhuis M, van Haren NE, Abramovic L, Scheewe TW, Brouwer RM, et al. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage 2014;84:299-306.
38. Malley JD, Malley KG, Pajevic S. Statistical Learning for Biomedical Data. New York: Cambridge University Press; 2011.
40. Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, Trivedi MH, et al. Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry 2016;3:243-250.
41. Nakai Y, Takiguchi T, Matsui G, Yamaoka N, Takada S. Detecting abnormal word utterances in children with autism spectrum disorders: machine-learning-based voice analysis versus speech therapists. Percept Mot Skills 2017;124:961-973.